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Introduction

Consider an ill-posed linear operator equation

Au = y

with A ∶ L1(Ω)→ Y bounded, where Ω a bounded and closed
subset of Rd , and Y is a separable Hilbert space.

Aim: Recovering stably a nonnegative solution of the equation,
when it exists.

Presentation based on

• a survey co-authored with

• Barbara Kaltenbacher, Klagenfurt University
• Christian Clason, Duisburg-Essen University

• a joint work with Martin Burger, Münster University.
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Entropy functionals

The (negative of the) Boltzmann-Shannon entropy
f ∶ L1(Ω)→ (−∞,+∞] is defined as

f (u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫Ω u(t) log u(t)dt if u ≥ 0 a.e. and u log u ∈ L1(Ω),

+∞ otherwise.

The Kullback-Leibler functional d ∶ dom f × dom f → [0,+∞] is

d(v ,u) = f (v) − f (u) − f ′(u, v − u),

d(v ,u) = ∫
Ω
[v(t) ln

v(t)
u(t)

− v(t) + u(t)]dt, (1)

when it is finite.
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Useful properties of the entropy functionals

• The function f is strictly convex and lower semicontinuous
with respect to the (weak) topology of L1(Ω).

• For any c > 0, the sublevel set

{v ∈ L1
+(Ω) ∶ f (v) ≤ c}

is convex, (weakly) closed, and weakly compact in L1(Ω).

• The interior of the domain of the function f is empty.

• The set ∂f (u) is nonempty if and only if u belongs to L∞+ (Ω)
and is bounded away from zero. In this case,
∂f (u) = {1 + log u}.

Borwein and Lewis ’91, Amato and Hugh ’91, Borwein and Limber ’96
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Variational methods for recovering nonnegative solutions

Let Au = y and let y δ be the noisy data satisfying ∥y δ − y∥ ≤ δ with
δ > 0.
Denote by u0 some a priori guess of the solution.

• Maximum entropy regularization

min
u≥0

∥Au − y δ∥2 + αR(u),

for some regularization parameter α > 0, where
R ∈ {f ,d(⋅,u0)}.

• Denote uδα the (unique) solution of the above problem.

Computationally: nonlinear optimization problems.

Engl, Landl, Eggermont
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Convergence results
Let α = α(δ) be chosen such that

α → 0 and
δ2

α
→ 0 as δ → 0 .

Then the minimizers uδα converge to the maximum entropy
solution u† of Au = y (that is, u† = arg mind(u,u0) s.t. Au = y):

∥uδα − u†∥1 → 0 as δ → 0 .

Moreover, if u† satisfies the (source) condition

log
u†

u0
= A∗w

for some w ∈ Y , and α = α(δ) is chosen such that α ∼ δ as δ → 0 ,
then one has

∥uδα − u†∥1 = O(
√
δ).
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More details

• The following inequalities are essential to obtaining the
previous results:

1
2∥A(u − uδα)∥2

Y + αd(u,uδα) ≤ 1
2∥Au − y δ∥2

Y + αd(u,u0)
− 1

2∥Au
δ
α − y δ∥2

Y − αd(uδα,u0), ∀u

and
1
2∥A(ũδα − uδα)∥2

Y + αd(ũδα,uδα) ≤ 2∥ỹ δ − y δ∥2
Y ,

where ũδα is the minimizer corresponding to ỹ δ instead of y δ.

• Uniform positivity of uδα is obtained, that is
uδα
u0

is bounded
away from zero.
Eggermont ’93
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Versions of entropy regularization
• Morozov-entropy regularization:

min
u∈L1

+
(Ω)

d(u,u0) s.t. ∥Au − y δ∥ ≤ δ.

No regularization parameter α!
Amato and Hugh ’91

• Ivanov-entropy regularization (method of quasi-solutions)

min
u∈L1

+
(Ω)

∥Au − y δ∥ s.t. f (u) ≤ ρ

ρ is the regularization parameter. Ivanov ’62

• Tikhonov-entropy regularization (presented before);
Another approach:

min
u∈D

1
2∥Au − y δ∥2 + αf (u)

The analysis relies on a nonlinear transformation T with
f (T (v)) = ∥v∥2

2 + c , where
T ∶ {v ∈ L2(Ω) ∶ v ≥ c , a.e.}→ L1(Ω). Engl and Landl ’92
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Versions of entropy regularization
• If the respective minimizers are unique, all three variational

regularization methods are equivalent for a certain choice of
the regularization parameters α and ρ.

• A practically relevant regularization parameter choice might
lead to different solutions.

• The three formulations also entail different numerical
approaches, some of which might be better suited than others
in concrete applications.

Interesting: Better understanding of the solutions of the three
entropy methods.
Lorenz and Worliczek ’13

Joint Kullback-Leibler regularization:

min
u≥0

d(y δ,Au) + αd(u,u0), α > 0,

for problems where A has positive values and y is positive.
R. and Anderssen ’08
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Iterative regularization methods for positive solution
reconstruction

• Iterative methods for ill-posed problems have a typical
behavior:
The distance between the solution u† and the iterates uδk
decays initially, then it increases.

Engl, Hanke, Neubauer ‘96

k )(* δk

),(
δ
kxzd

• It is necessary to choose an appropriate stopping index
k∗ ∶= k∗(δ, y δ) <∞ such that uδk∗ → u† as δ → 0.

• A frequent choice is a discrepancy principle, e.g., of Morozov.

Elena Resmerita Reconstruction of positive solutions Oaxaca, September 18, 2017 10



Iterative regularization methods for positive solution
reconstruction

• Iterative methods for ill-posed problems have a typical
behavior:
The distance between the solution u† and the iterates uδk
decays initially, then it increases.

Engl, Hanke, Neubauer ‘96

k )(* δk

),(
δ
kxzd

• It is necessary to choose an appropriate stopping index
k∗ ∶= k∗(δ, y δ) <∞ such that uδk∗ → u† as δ → 0.

• A frequent choice is a discrepancy principle, e.g., of Morozov.

Elena Resmerita Reconstruction of positive solutions Oaxaca, September 18, 2017 10



Iterative regularization methods for positive solution
reconstruction

• Iterative methods for ill-posed problems have a typical
behavior:
The distance between the solution u† and the iterates uδk
decays initially, then it increases. Engl, Hanke, Neubauer ‘96

k )(* δk

),(
δ
kxzd

• It is necessary to choose an appropriate stopping index
k∗ ∶= k∗(δ, y δ) <∞ such that uδk∗ → u† as δ → 0.

• A frequent choice is a discrepancy principle, e.g., of Morozov.

Elena Resmerita Reconstruction of positive solutions Oaxaca, September 18, 2017 10



Iterative regularization methods for positive solution
reconstruction

• Iterative methods for ill-posed problems have a typical
behavior:
The distance between the solution u† and the iterates uδk
decays initially, then it increases. Engl, Hanke, Neubauer ‘96

k )(* δk

),(
δ
kxzd

• It is necessary to choose an appropriate stopping index
k∗ ∶= k∗(δ, y δ) <∞ such that uδk∗ → u† as δ → 0.

• A frequent choice is a discrepancy principle, e.g., of Morozov.

Elena Resmerita Reconstruction of positive solutions Oaxaca, September 18, 2017 10



Landweber method in Hilbert spaces

Classical Landweber method:
Choose u0 = 0, τ ∈ (0,2∥A∥−2) and

uk+1 = uk + τA∗(y −Auk), k = 0, . . . .

• The iterates converge strongly to the minimum norm solution
u† for exact data y ∈ ranA.

• For noisy data y = y δ ∈ ranA ∖ ranA: convergence when using
the discrepancy principle of Morozov:
k∗(δ, y δ) = max{k ∈ N ∶ ∥Auk − y δ∥ ≥ τδ}, for some τ > 1.

Remark: Stability estimate of order O(
√
k),

∥uδk − uk∥ = O(
√
k).
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Projected Landweber methods in Hilbert spaces

• Generalization to constrained inverse problems of the form

Au = y s.t. u ∈ C

for a convex and closed set C ⊂ L2(Ω).
The projected Landweber method:

uk+1 = PC [uk + τA∗(y −Auk)] , k = 0, . . . ,

where PC is the metric projection onto C .
Eicke ’92

• This coincides with a forward–backward splitting or proximal
gradient descent applied to ∥Au − y∥2 + δC(u), where δC is
the indicator function of C .
Combettes, Wajs ’05
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Projected Landweber methods in Hilbert spaces
Convergence results for projected Landweber:

• The case of exact data y ∈ A(C):
• Weak convergence of the iterates to u†.
• Strong convergence under an additional restrictive condition:

Id−τA∗A is compact.

• The case of noisy data y δ ∉ ranA:.

∥uδk − uk∥ ≤ τ ∥A∥δk , k = 0, . . . .

”Dual” projected Landweber iteration:

• Set w0 = 0, compute for k = 0, . . . , the iterates

{
uk = PCA

∗wk ,

wk+1 = wk + τ(y −Auk).

• Strong convergence can be shown; preconditioning also
possible ( Viana ’97 )
Hope: Further acceleration by adding inertial terms.
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Expectation-Maximization algorithms for integral equations

• Consider Fredholm integral operators of the first kind, i.e.,

A ∶ L1(Ω)→ L1(Σ), (Au)(s) = ∫
Ω
a(s, t)u(t)dt , (2)

where the kernel a and the data y are positive pointwise a.e.

• The method of convergent weights:

uk+1(t) = uk(t)∫
Σ

a(s, t)y(s)
(Auk)(s)

ds, t ∈ Ω, k = 0, . . . .

Kondor ’83
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The finite dimensional counterpart

ujk+1 = ujk

n

∑
i=1

aijyi

∑m
l=1 ailu

l
k

, j = 1,m,

• EM algorithm for PET and the Lucy–Richardson algorithm in
astronomical imaging.
Richardson ’72, Lucy ’75, Shepp and Vardi ’82, Iusem ’92

Bausche, Noll, Celler, Borwein ’91

• It converges to (nonnegative) minimizers of d(y ,Au).

• Advantages of EM:
• it shapes the features of the solution in early iterations
• easy to compute

• Disadvantages of EM:
• slow algorithm
• very unstable numerically
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Properties of the EM algorithm in infinite dimension

• Under some assumptions on A, y , one can show:

If u0 ∈ L1
+(Ω) such that d(u†,u0) <∞, then, for any k ≥ 0, the

iterates uk satisfy

d(u†,uk) <∞,
d(uk+1,uk) ≤ d(y ,Auk) − d(y ,Auk+1),

d(y ,Auk) − d(y ,Au†) ≤ d(u†,uk) − d(u†,uk+1).

Therefore, the sequences {d(u†,uk)}k∈N and {d(y ,Auk)}k∈N
are nonincreasing. Moreover,

lim
k→∞

d(y ,Auk) = d(y ,Au†),

lim
k→∞

d(uk+1,uk) = 0.

Mülthei and Schorr, Eggermont

Open problem: Convergence of the algorithm.
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The EM algorithm with noisy data y δ satisfying
d(y δ, y) ≤ δ

uδk+1(t) = uδk(t)∫
Σ

a(s, t)y δ(s)
(Auk)(s)

ds, t ∈ Ω, k = 0, . . . .

• One can show:
d(u†,uδk+1) ≤ d(u†,uδk)

for all k ≥ 0 such that

d(y δ,Auδk) ≥ δγ,

for some constant γ > 0.

• A possible choice of the stopping index for the algorithm:

k∗(δ) = min{k ∈ N ∶ d(y δ,Auδk) ≤ τδγ}

for some fixed τ > 1.

Elena Resmerita Reconstruction of positive solutions Oaxaca, September 18, 2017 17



The EM algorithm with noisy data y δ satisfying
d(y δ, y) ≤ δ

• A stopping index for the algorithm:

k∗(δ) = min{k ∈ N ∶ d(y δ,Auδk) ≤ τδγ}

for some fixed τ > 1.
• Existence of such a stopping index:

For all δ > 0, there exists a k∗(δ) defined above such that

k∗(δ)τδγ ≤ k∗(δ)d(y δ,Auδk∗(δ)−1) ≤ d(u†,u0) + k∗(δ)δγ.

The stopping index k∗(δ) is finite:

k∗(δ) ≤
d(u†,u0)
γ(τ − 1)δ

and
lim
δ→0+

∥Auδk∗(δ) − y∥p = 0,

for any p ∈ [1,+∞). R, Engl, Iusem ’07
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More about EM in infinite dimension

• EM algorithms with smoothing steps:

uk+1 = S (N (uk)A∗
y

Auk
) , k = 0, . . . , (3)

with u0 ≡ 1 and

Nu(t) = exp ([S∗(log u)](t)) for all t ∈ Ω. (4)

Here S is a linear smoothing (integral) operator.
Eggermont ’96

• OS-EM method:
Haltmeier, Leitao, R ’09

Interesting: Convergence of the algorithm by using the discrepancy
principle or other stopping rules.
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Entropic projection method in infinite dimensional spaces

uk ∈ arg min
u

{1

2
∥Au − y δ∥2 + µd(u,uk−1) + χj(u) −

1

2
∥Au −Auk−1∥2} ,

equivalently,

uk ∈ arg min
u

{⟨Au,Auk−1 − y δ⟩ + µd(u,uk−1) + χj(u)} ,

where

χ1(u) = { 0 if ∫Ω u(t) dt = 1,
+∞ else,

and χ0 ≡ 0 (the original problem without integral constraint),
µ > 0.

• One can show welldefinedness of the iterates uk .

• Nonnegativity: u0 nonnegative ⇒ uk nonnegative, ∀k ∈ N.

Yin, Osher, Goldfarb and Darbon ’08, Burger, R ’17
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The theoretical context
We work with operators satisfying a ’continuity’ condition:

∥Au −Av∥ ≤ γ
√
d(u, v) for some γ > 0 (cc)

The two situations we consider:

• Mean one constraint, that is ∫ uk(t)dt = 1, k ∈ N:

uk = ck−1uk−1e
λA∗(yδ−Auk−1), ck−1 =

1

∫Ω uk−1eλA
∗(yδ−Auk−1) dt

,

√
(cc)

• No mean constraint;

uk = uk−1e
λA∗(yδ−Auk−1),

with λ = 1/µ (pointwise equalities defining uk).

Examples of operators satisfying (cc)?
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Related literature in finite dimensional optimization

uk ∈ arg min
u

{⟨u,A∗(Auk−1 − y)⟩ + µkd(u,uk−1)} ,

with d = Df = KL, f being the entropy: f (u) = ∑n
j=1 uj lnuj .

Start with:
min
u≥0

g(u)

• Proximal point methods:

uk+1 = argminug(u) + µkd(u,uk)

Implicite iterative method

• Easier: Linearize the objective functional, i.e.,
g(u) ∼ g(uk) +∇g(uk)t(u − uk)

uk+1 = argminu∇g(uk)tu + µkd(u,uk)
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uk+1 = argminu∇g(uk)tu + µkd(u,uk)

• The first order optimality condition for this problem is

∇f (uk+1) = ∇f (uk) −
1

µk
∇g(uk),

Since ∇f invertible,

uk+1 = (∇f )−1(∇f (uk) −
1

µk
∇g(uk))

that is
ujk+1 = ujke

−λk∇g(uk)
j

, λk = 1/µk
• Several line search versions of the algorithm have been

proposed and analyzed.
Iusem ’94, ’97
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Convergence analysis - Noisy data case
Discrepancy principle

Proposition: If

• A ∶ L1(Ω)→ Y is bounded and linear, satisfying the
’continuity’ condition

• z is a positive solution of Au = y with χj(z) = 0 if j = 1.

• y δ ∈ Y are noisy data satisfying ∥y − y δ∥ ≤ δ, for some noise
level δ

• u0 ∈ dom ∂f is an arbitrary starting element with the
properties 1 + log u0 ∈R(A∗) and χj(u0) = 0 if j = 1

• the stopping index k∗ is chosen such that

k∗(δ) = min{k ∈ N ∶ ∥Auk − y δ∥ ≤ τδ}, τ > 1,

then
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i) The residual ∥Auk − y δ∥ decreases when k increases.
ii) The index k∗(δ) is finite.
iii) There exists a weakly convergent subsequence of (uk∗(δ))δ in

L1(Ω). If (k∗(δ))δ is unbounded, then each limit point is a
solution of Au = y .
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Convergence analysis - Noisy data case II
A priori rule

Proposition: If

• A ∶ L1(Ω)→ Y is bounded and linear, satisfying the
’continuity’ condition

• z is a positive solution of Au = y with χj(z) = 0 if j = 1.

• y δ ∈ Y are noisy data satisfying ∥y − y δ∥ ≤ δ, for some noise
level δ

• u0 ∈ dom ∂f is an arbitrary starting element with the
properties 1 + log u0 ∈R(A∗) and χj(u0) = 0 if j = 1.

• the stopping index k∗ us chosen of order 1/δ,

then the sequence (f (uk∗(δ)))δ is bounded and thus, there exists a

subsequence of (uk∗(δ))δ in L1(Ω) which converges weakly to a
solution of Au = y .
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Error estimates - exact data case

Proposition: If

• A ∶ L1(Ω)→ Y is a bounded linear operator satisfying the
’continuity’ condition

• z is a positive solution of Au = y verifying χj(z) = 0 if j = 1

• u0 ∈ dom ∂f be an arbitrary starting element with the
properties 1 + log u0 ∈R(A∗) and χj(u0) = 0 if j = 1.

Additionally, let the following source condition hold:

1 + log z ∈R(A∗).

Then one has
d(z ,uk) = O(1/k).

Moreover, ∥uk − z∥1 = O(1/
√
k) if j = 1.
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