Reconstruction of positive solutions for ill-posed problems

Elena Resmerita

Institute of Mathematics Alpen-Adria Universität Klagenfurt, Austria

Splitting Algorithms, Modern Operator Theory, and Applications September 17-22, 2017 CMO-BIRS, Oaxaca, Mexico

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

イロト 不得下 イヨト イヨト 二日

Introduction

Consider an ill-posed linear operator equation

$$Au = y$$

with $A: L^1(\Omega) \to Y$ bounded, where Ω a bounded and closed subset of \mathbb{R}^d , and Y is a separable Hilbert space.

Aim: Recovering stably a nonnegative solution of the equation, when it exists.

Presentation based on

- a survey co-authored with
 - Barbara Kaltenbacher, Klagenfurt University
 - Christian Clason, Duisburg-Essen University
- a joint work with Martin Burger, Münster University.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Entropy functionals

The (negative of the) Boltzmann-Shannon entropy $f: L^1(\Omega) \to (-\infty, +\infty]$ is defined as

$$f(u) = \begin{cases} \int_{\Omega} u(t) \log u(t) dt & \text{if } u \ge 0 \text{ a.e. and } u \log u \in L^{1}(\Omega), \\ +\infty & \text{otherwise.} \end{cases}$$

The Kullback-Leibler functional $d : dom f \times dom f \rightarrow [0, +\infty]$ is

$$d(v, u) = f(v) - f(u) - f'(u, v - u),$$

$$d(v, u) = \int_{\Omega} \left[v(t) \ln \frac{v(t)}{u(t)} - v(t) + u(t) \right] dt,$$
 (1)

when it is finite.

Reconstruction of positive solutions

Oaxaca, September 18, 2017

イロト 不得 トイヨト イヨト 二日

Elena Resmerita

Useful properties of the entropy functionals

- The function f is strictly convex and lower semicontinuous with respect to the (weak) topology of L¹(Ω).
- For any c > 0, the sublevel set

$$\left\{v \in L^1_+(\Omega) : f(v) \le c\right\}$$

is convex, (weakly) closed, and weakly compact in $L^1(\Omega)$.

- The interior of the domain of the function f is empty.
- The set ∂f(u) is nonempty if and only if u belongs to L[∞]₊(Ω) and is bounded away from zero. In this case, ∂f(u) = {1 + log u}.

Borwein and Lewis '91, Amato and Hugh '91, Borwein and Limber '96

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

Variational methods for recovering nonnegative solutions

Let Au = y and let y^{δ} be the noisy data satisfying $||y^{\delta} - y|| \le \delta$ with $\delta > 0$.

Denote by u_0 some a priori guess of the solution.

• Maximum entropy regularization

$$\min_{u\geq 0} \|Au-y^{\delta}\|^2 + \alpha \mathcal{R}(u),$$

for some regularization parameter $\alpha > 0$, where $\mathcal{R} \in \{f, d(\cdot, u_0)\}.$

• Denote u_{α}^{δ} the (unique) solution of the above problem. Computationally: nonlinear optimization problems.

Engl, Landl, Eggermont

Elena Resmerita

Convergence results

Let $\alpha = \alpha(\delta)$ be chosen such that

$$\alpha \to 0 \text{ and } \frac{\delta^2}{\alpha} \to 0 \text{ as } \delta \to 0.$$

Then the minimizers u_{α}^{δ} converge to the maximum entropy solution u^{\dagger} of Au = y (that is, $u^{\dagger} = \arg \min d(u, u_0)$ s.t. Au = y):

$$||u_{\alpha}^{\delta} - u^{\dagger}||_1 \to 0 \text{ as } \delta \to 0.$$

Moreover, if u^{\dagger} satisfies the (source) condition

$$\log \frac{u^{\dagger}}{u_0} = A^* w$$

for some $w \in Y$, and $\alpha = \alpha(\delta)$ is chosen such that $\alpha \sim \delta$ as $\delta \to 0$, then one has

$$\|u_{\alpha}^{\delta}-u^{\dagger}\|_{1}=\mathcal{O}(\sqrt{\delta}).$$

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

More details

• The following inequalities are essential to obtaining the previous results:

$$\frac{1}{2} \|A(u-u_{\alpha}^{\delta})\|_{Y}^{2} + \alpha d(u,u_{\alpha}^{\delta}) \leq \frac{1}{2} \|Au-y^{\delta}\|_{Y}^{2} + \alpha d(u,u_{0})$$

$$- \frac{1}{2} \|Au_{\alpha}^{\delta}-y^{\delta}\|_{Y}^{2} - \alpha d(u_{\alpha}^{\delta},u_{0}), \quad \forall u$$

and

$$\frac{1}{2} \|A(\tilde{u}_{\alpha}^{\delta} - u_{\alpha}^{\delta})\|_{Y}^{2} + \alpha d(\tilde{u}_{\alpha}^{\delta}, u_{\alpha}^{\delta}) \leq 2 \|\tilde{y}^{\delta} - y^{\delta}\|_{Y}^{2},$$

where $\tilde{u}_{\alpha}^{\delta}$ is the minimizer corresponding to \tilde{y}^{δ} instead of $y^{\delta}.$

• Uniform positivity of u_{α}^{δ} is obtained, that is $\frac{u_{\alpha}^{\delta}}{u_0}$ is bounded away from zero.

Eggermont '93

Reconstruction of positive solutions

Oaxaca, September 18, 2017

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Versions of entropy regularization

Morozov-entropy regularization:

$$\min_{u\in L^1_+(\Omega)} d(u, u_0) \quad \text{s.t.} \quad \|Au - y^{\delta}\| \leq \delta.$$

No regularization parameter α !

Amato and Hugh '91

Ivanov-entropy regularization (method of quasi-solutions)

$$\min_{u \in L^1_+(\Omega)} \|Au - y^{\delta}\| \quad \text{s.t.} \quad f(u) \le \rho$$

 ρ is the regularization parameter. $\,$ $_{\rm Ivanov}$ '62

• Tikhonov-entropy regularization (presented before); Another approach:

$$\min_{u\in\mathcal{D}}\frac{1}{2}\|Au-y^{\delta}\|^{2}+\alpha f(u)$$

The analysis relies on a nonlinear transformation T with $f(T(v)) = ||v||_2^2 + c$, where $T : \{v \in L^2(\Omega) : v \ge c, \text{ a.e.}\} \rightarrow L^1(\Omega)$. England_Landl_'92 $\equiv v \ge v \otimes c$?

Elena Resmerita

Reconstruction of positive solutions

Versions of entropy regularization

- If the respective minimizers are unique, all three variational regularization methods are equivalent for a certain choice of the regularization parameters α and ρ .
- A practically relevant regularization parameter choice might lead to different solutions.
- The three formulations also entail different numerical approaches, some of which might be better suited than others in concrete applications.

Interesting: Better understanding of the solutions of the three entropy methods.

Lorenz and Worliczek '13

Joint Kullback-Leibler regularization:

$$\min_{u\geq 0} d(y^{\delta}, Au) + \alpha d(u, u_0), \ \alpha > 0,$$

for problems where A has positive values and y is positive.

R. and Anderssen '08

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

Iterative regularization methods for positive solution reconstruction

 Iterative methods for ill-posed problems have a typical behavior:

The distance between the solution u^{\dagger} and the iterates u_{μ}^{δ} decays initially, then it increases.

- It is necessary to choose an appropriate stopping index $k_* := k_*(\delta, y^{\delta}) < \infty$ such that $u_k^{\delta} \to u^{\dagger}$ as $\delta \to 0$.
- A frequent choice is a discrepancy principle, e.g., of Morozov.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

- 3

Iterative regularization methods for positive solution reconstruction

 Iterative methods for ill-posed problems have a typical behavior:

The distance between the solution u^{\dagger} and the iterates u_{μ}^{δ} decays initially, then it increases.

- It is necessary to choose an appropriate stopping index $k_* := k_*(\delta, y^{\delta}) < \infty$ such that $u_k^{\delta} \to u^{\dagger}$ as $\delta \to 0$.
- A frequent choice is a discrepancy principle, e.g., of Morozov.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

- 3

Iterative regularization methods for positive solution reconstruction

 Iterative methods for ill-posed problems have a typical behavior:

The distance between the solution u^{\dagger} and the iterates u_{k}^{δ} decays initially, then it increases. Engl, Hanke, Neubauer '96

- It is necessary to choose an appropriate stopping index $k_* := k_*(\delta, y^{\delta}) < \infty$ such that $u_k^{\delta} \to u^{\dagger}$ as $\delta \to 0$.
- A frequent choice is a discrepancy principle, e.g., of Morozov.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

- 3

Iterative regularization methods for positive solution reconstruction

• Iterative methods for ill-posed problems have a typical behavior:

The distance between the solution u^{\dagger} and the iterates u_k^{δ} decays initially, then it increases. Engl, Hanke, Neubauer '96

- It is necessary to choose an appropriate stopping index $k_* \coloneqq k_*(\delta, y^{\delta}) < \infty$ such that $u_{k_*}^{\delta} \to u^{\dagger}$ as $\delta \to 0$.
- A frequent choice is a discrepancy principle, e.g., of Morozov.

Elena Resmerita

Reconstruction of positive solutions

Landweber method in Hilbert spaces

Classical Landweber method: Choose $u_0 = 0$, $\tau \in (0, 2 ||A||^{-2})$ and

$$u_{k+1} = u_k + \tau A^* (y - Au_k), \qquad k = 0, \ldots$$

- The iterates converge strongly to the minimum norm solution u^{\dagger} for exact data $y \in \operatorname{ran} A$.
- For noisy data y = y^δ ∈ ran A \ ran A: convergence when using the discrepancy principle of Morozov: k_{*}(δ, y^δ) = max{k ∈ N : ||Au_k - y^δ|| ≥ τδ}, for some τ > 1. Remark: Stability estimate of order O(√k),

$$\|u_k^\delta-u_k\|=\mathcal{O}(\sqrt{k}).$$

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

Projected Landweber methods in Hilbert spaces

• Generalization to constrained inverse problems of the form

$$Au = y$$
 s.t. $u \in C$

for a convex and closed set $C \subset L^2(\Omega)$. The projected Landweber method:

$$u_{k+1} = P_C [u_k + \tau A^* (y - Au_k)], \qquad k = 0, \dots,$$

where P_C is the metric projection onto C. Eicke '92

• This coincides with a forward-backward splitting or proximal gradient descent applied to $||Au - y||^2 + \delta_C(u)$, where δ_C is the indicator function of C.

Combettes, Wajs '05

Elena Resmerita

Oaxaca, September 18, 2017

イロト 不得 トイヨト イヨト 二日

Projected Landweber methods in Hilbert spaces

Convergence results for projected Landweber:

- The case of exact data $y \in A(C)$:
 - Weak convergence of the iterates to u^{\dagger} .
 - Strong convergence under an additional restrictive condition: $\operatorname{Id} -\tau A^*A$ is compact.
- The case of noisy data $y^{\delta} \notin \operatorname{ran} A$:.

 $\|u_k^{\delta}-u_k\|\leq \tau \|A\|\delta k, \qquad k=0,\ldots.$

"Dual" projected Landweber iteration:

• Set $w_0 = 0$, compute for $k = 0, \ldots$, the iterates

$$\begin{cases} u_k = P_C A^* w_k, \\ w_{k+1} = w_k + \tau (y - A u_k). \end{cases}$$

Strong convergence can be shown; preconditioning also possible (Viana '97)
 Hope: Further acceleration by adding inertial terms.

Elena Resmerita

Reconstruction of positive solutions

Expectation-Maximization algorithms for integral equations

• Consider Fredholm integral operators of the first kind, i.e.,

$$A: L^{1}(\Omega) \to L^{1}(\Sigma), \qquad (Au)(s) = \int_{\Omega} a(s,t)u(t) dt, \quad (2)$$

where the kernel a and the data y are positive pointwise a.e.

• The method of convergent weights:

$$u_{k+1}(t) = u_k(t) \int_{\Sigma} \frac{a(s,t)y(s)}{(Au_k)(s)} ds, \quad t \in \Omega, \qquad k = 0, \ldots.$$

Kondor '83

Reconstruction of positive solutions

Oaxaca, September 18, 2017

3

イロト 不得 トイヨト イヨト

Elena Resmerita

The finite dimensional counterpart

$$u_{k+1}^{j} = u_{k}^{j} \sum_{i=1}^{n} \frac{a_{ij}y_{i}}{\sum_{l=1}^{m} a_{il}u_{k}^{l}}, \ j = 1, m,$$

- EM algorithm for PET and the Lucy–Richardson algorithm in astronomical imaging. Richardson '72, Lucy '75, Shepp and Vardi '82, Iusem '92 Bausche, Noll, Celler, Borwein '91
- It converges to (nonnegative) minimizers of d(y, Au).
- Advantages of EM:
 - it shapes the features of the solution in early iterations
 - easy to compute
- Disadvantages of EM:
 - slow algorithm
 - very unstable numerically

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

Properties of the EM algorithm in infinite dimension

Under some assumptions on A, y, one can show:
 If u₀ ∈ L¹₊(Ω) such that d(u[†], u₀) < ∞, then, for any k ≥ 0, the iterates u_k satisfy

$$\begin{aligned} d(u^{\dagger}, u_{k}) < \infty, \\ d(u_{k+1}, u_{k}) \le d(y, Au_{k}) - d(y, Au_{k+1}), \\ d(y, Au_{k}) - d(y, Au^{\dagger}) \le d(u^{\dagger}, u_{k}) - d(u^{\dagger}, u_{k+1}). \end{aligned}$$

Therefore, the sequences $\{d(u^{\dagger}, u_k)\}_{k \in \mathbb{N}}$ and $\{d(y, Au_k)\}_{k \in \mathbb{N}}$ are nonincreasing. Moreover,

$$\lim_{k \to \infty} d(y, Au_k) = d(y, Au^{\dagger}),$$
$$\lim_{k \to \infty} d(u_{k+1}, u_k) = 0.$$

Mülthei and Schorr, Eggermont

Elena Resmerita

Reconstruction of positive solutions

The EM algorithm with noisy data y^{δ} satisfying $d(y^{\delta}, y) \leq \delta$

$$u_{k+1}^{\delta}(t) = u_k^{\delta}(t) \int_{\Sigma} \frac{a(s,t)y^{\delta}(s)}{(Au_k)(s)} ds, \quad t \in \Omega, \qquad k = 0, \ldots.$$

• One can show:

$$d(u^{\dagger}, u_{k+1}^{\delta}) \leq d(u^{\dagger}, u_{k}^{\delta})$$

for all $k \ge 0$ such that

$$d(y^{\delta}, Au_k^{\delta}) \geq \delta \gamma,$$

for some constant $\gamma > 0$.

• A possible choice of the stopping index for the algorithm:

$$k_*(\delta) = \min\left\{k \in \mathbb{N} : d(y^{\delta}, Au_k^{\delta}) \le \tau \delta \gamma\right\}$$

for some fixed $\tau > 1$.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

The EM algorithm with noisy data y^{δ} satisfying $d(y^{\delta}, y) \leq \delta$

• A stopping index for the algorithm:

$$k_*(\delta) = \min\left\{k \in \mathbb{N} : d(y^{\delta}, Au_k^{\delta}) \le \tau \delta \gamma\right\}$$

for some fixed $\tau > 1$.

Existence of such a stopping index:
 For all δ > 0, there exists a k_{*}(δ) defined above such that

 $k_*(\delta)\tau\delta\gamma \leq k_*(\delta)d(y^{\delta},Au^{\delta}_{k_*(\delta)-1}) \leq d(u^{\dagger},u_0) + k_*(\delta)\delta\gamma.$

The stopping index $k_*(\delta)$ is finite:

$$k_*(\delta) \leq \frac{d(u^{\dagger}, u_0)}{\gamma(\tau - 1)\delta}$$

and

$$\lim_{\delta\to 0^+} \|Au_{k_*(\delta)}^{\delta}-y\|_p=0,$$

for any $p \in [1, +\infty)$. R, Engl, lusem '07

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

More about EM in infinite dimension

• EM algorithms with smoothing steps:

$$u_{k+1} = S\left(\mathcal{N}(u_k) A^* \frac{y}{Au_k}\right), \qquad k = 0, \dots, \qquad (3)$$

with $u_0 \equiv 1$ and

$$\mathcal{N}u(t) = \exp\left([S^*(\log u)](t)\right) \quad \text{for all } t \in \Omega.$$
 (4)

Here S is a linear smoothing (integral) operator.

Eggermont '96

• OS-EM method:

Haltmeier, Leitao, R '09

Interesting: Convergence of the algorithm by using the discrepancy principle or other stopping rules.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

Entropic projection method in infinite dimensional spaces

$$u_k \in \arg \min_{u} \left\{ \frac{1}{2} \|Au - y^{\delta}\|^2 + \mu d(u, u_{k-1}) + \chi_j(u) - \frac{1}{2} \|Au - Au_{k-1}\|^2 \right\},$$

equivalently,

$$u_k \in \arg\min_u \left\{ \langle Au, Au_{k-1} - y^{\delta} \rangle + \mu d(u, u_{k-1}) + \chi_j(u) \right\},$$

where

$$\chi_1(u) = \begin{cases} 0 & \text{if } \int_{\Omega} u(t) \ dt = 1, \\ +\infty & \text{else,} \end{cases}$$

and $\chi_0 \equiv 0$ (the original problem without integral constraint), $\mu > 0$.

- One can show welldefinedness of the iterates u_k .
- Nonnegativity: u_0 nonnegative $\Rightarrow u_k$ nonnegative, $\forall k \in N$.

Elena Resmerita

Reconstruction of positive solutions

The theoretical context

We work with operators satisfying a 'continuity' condition:

$$\|Au - Av\| \le \gamma \sqrt{d(u, v)}$$
 for some $\gamma > 0$ (cc)

The two situations we consider:

• Mean one constraint, that is $\int u_k(t) dt = 1, k \in \mathbb{N}$:

$$u_{k} = c_{k-1}u_{k-1}e^{\lambda A^{*}(y^{\delta} - Au_{k-1})}, \qquad c_{k-1} = \frac{1}{\int_{\Omega} u_{k-1}e^{\lambda A^{*}(y^{\delta} - Au_{k-1})} dt},$$

$$\sqrt{(cc)}$$

No mean constraint;

$$u_k = u_{k-1} e^{\lambda A^* (y^{\delta} - A u_{k-1})},$$

with $\lambda = 1/\mu$ (pointwise equalities defining u_k). Examples of operators satisfying (cc)?

Elena Resmerita

Reconstruction of positive solutions

Related literature in finite dimensional optimization

$$u_k \in \arg\min_{u} \left\{ \langle u, A^*(Au_{k-1} - y) \rangle + \mu_k d(u, u_{k-1}) \right\},\$$

with $d = D_f = KL$, f being the entropy: $f(u) = \sum_{j=1}^n u_j \ln u_j$.

Start with:

 $\min_{u\geq 0}g(u)$

• Proximal point methods:

$$u_{k+1} = \operatorname{argmin}_{u} g(u) + \mu_k d(u, u_k)$$

Implicite iterative method

• Easier: Linearize the objective functional, i.e., $g(u) \sim g(u_k) + \nabla g(u_k)^t (u - u_k)$

$$u_{k+1} = \operatorname{argmin}_{u} \nabla g(u_k)^t u + \mu_k d(u, u_k)$$

Elena Resmerita

Reconstruction of positive solutions

$$u_{k+1} = \operatorname{argmin}_u \nabla g(u_k)^t u + \mu_k d(u, u_k)$$

The first order optimality condition for this problem is

$$\nabla f(u_{k+1}) = \nabla f(u_k) - \frac{1}{\mu_k} \nabla g(u_k),$$

Since ∇f invertible,

$$u_{k+1} = (\nabla f)^{-1} (\nabla f(u_k) - \frac{1}{\mu_k} \nabla g(u_k))$$

that is

$$u_{k+1}^{j} = u_{k}^{j} e^{-\lambda_{k} \nabla g(u_{k})^{j}}, \quad \lambda_{k} = 1/\mu_{k}$$

• Several line search versions of the algorithm have been proposed and analyzed.

lusem '94, '97

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

Convergence analysis - Noisy data case Discrepancy principle

Proposition: If

- A: L¹(Ω) → Y is bounded and linear, satisfying the 'continuity' condition
- z is a positive solution of Au = y with $\chi_j(z) = 0$ if j = 1.
- $y^{\delta} \in Y$ are noisy data satisfying $||y y^{\delta}|| \le \delta$, for some noise level δ
- u₀ ∈ dom∂f is an arbitrary starting element with the properties 1 + log u₀ ∈ R(A*) and χ_j(u₀) = 0 if j = 1
- the stopping index k_* is chosen such that

$$k_*(\delta) = \min\{k \in \mathbb{N} : \|Au_k - y^{\delta}\| \le \tau \delta\}, \ \tau > 1,$$

then

Elena Resmerita

Oaxaca, September 18, 2017

i) The residual ||Au_k - y^δ|| decreases when k increases.
ii) The index k_{*}(δ) is finite.
iii) There exists a weakly convergent subsequence of (u_{k*(δ)})_δ in L¹(Ω). If (k_{*}(δ))_δ is unbounded, then each limit point is a solution of Au = y.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

Convergence analysis - Noisy data case II A priori rule

Proposition: If

- A: L¹(Ω) → Y is bounded and linear, satisfying the 'continuity' condition
- z is a positive solution of Au = y with $\chi_j(z) = 0$ if j = 1.
- $y^{\delta} \in Y$ are noisy data satisfying $||y y^{\delta}|| \le \delta$, for some noise level δ
- $u_0 \in dom \partial f$ is an arbitrary starting element with the properties $1 + \log u_0 \in \mathcal{R}(A^*)$ and $\chi_j(u_0) = 0$ if j = 1.
- the stopping index k_* us chosen of order $1/\delta$,

then the sequence $(f(u_{k_*(\delta)}))_{\delta}$ is bounded and thus, there exists a subsequence of $(u_{k_*(\delta)})_{\delta}$ in $L^1(\Omega)$ which converges weakly to a solution of Au = y.

Elena Resmerita

Oaxaca, September 18, 2017

Error estimates - exact data case

Proposition: If

- A: L¹(Ω) → Y is a bounded linear operator satisfying the 'continuity' condition
- z is a positive solution of Au = y verifying $\chi_j(z) = 0$ if j = 1
- u₀ ∈ dom ∂f be an arbitrary starting element with the properties 1 + log u₀ ∈ R(A*) and χ_j(u₀) = 0 if j = 1.

Additionally, let the following source condition hold:

$$1 + \log z \in \mathcal{R}(A^*).$$

Then one has

$$d(z,u_k)=O(1/k).$$

Moreover, $||u_k - z||_1 = O(1/\sqrt{k})$ if j = 1.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017

References

- U. Amato and W. Hughes, Maximum entropy regularization of Fredholm integral equations of the first kind, Inv. Probl. 7 (1991) 793–803.
- M. Burger and E. Resmerita, Iterative Regularization of Linear III-posed Problem by an Entropic Projection Method, preprint, 2017.
- P. Eggermont. Maximum entropy regularization for Fredholm integral equations of the first kind. SIAM J. Math. Anal. 24 (1993) 1557–1576.
- H. Engl and G. Landl. Convergence-rates for maximum-entropy regularization. SIAM J. Numer. Anal. 30 (1993) 1509-1536.
- A. Kondor. Method of convergent weights An iterative procedure for solving Fredholm's integral equations of the first kind. Nucl. Instr. Meth. Phys. Res. 216 (1983) 177–181.
- H.N. Mülthei and B. Schorr. On an iterative method for a class of integral equations of the first kind. Math. Methods Appl. Sci. 9(2) (1987) 137–168.
- E. Resmerita and R.S. Anderssen. A joint additive Kullback-Leibler residual minimization and regularization for linear inverse problems. Math. Meth. Appl. Sci. DOI: 10.1002/mma.855 2007.

Elena Resmerita

Reconstruction of positive solutions

Oaxaca, September 18, 2017